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For the  purpose of studying core poiar iza t ion  i n  chromium8 

mzasurements w e r e  made of the magnetic hyperfine constants  

i n  both configurat ions.  For 3d 4p8 J a ( ~ = 4 ) i  = 11.6k0.15 Me, 

la{J=3)1 5 1.5*2.0 Mc, (a(J=2)1 = 26.16a0.10 i4c8 and for 

5 

3da4s4p8 la(J=3)1 = 70.4k2.6 MC. 

INTRODUCTION 

The techniques of leve l  crossing spectrcscopy and 

o p t i c a l  double resonance have been applied i n  a s tudy of t he  

e l ec t ron ic  and nuclear propert ies  of the  isotopes of chromium, 

This i s  the  f i r s t  experiment i n  which the excited states of a 

t r a n s i t i o n  m e t a l  have been s tudied by radio-frequency methods 

i n  the  case of the free atom. The nuclear magnetic moment 

of Cr53 has been deternined t o  high precis ion by M4R. 

The quadrupole moment has been measured roughly i n  an ENDOR 

(1) 

experiment. (2) The uncertainty i n  t h i s  r e s u l t  arises s ince  

t h e  in t e rp re t a t ion  of t he  data o3tained i n  the EiDOR tech- 

nique necessar i ly  presumes a knowledge of the  c r y s t a l  f i e ld  

environment. 

ac t ion  was  gained i n  our experiment due t o  the  large l ine-  

widths associated with the exci ted states. 

N o  information concerning the  quadrupole in t e r -  

V?e expected that polar izat ion of the  core e lec t rons  by 

the ex te rna l  d electrons would contr ibute  s i g n i f i c a n t l y  t o  

the hyperf ine in t e rac t ion ,  Measurements of t he  hyperfine 

cons tan ts  i n  three J levels of one configurat ion and i n  one 
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. b  J l eve l  ot an in tezac t ing  configuration were made to stutdy 

this phenomenor, more closely.  The effect w a s  obser-Jed as w a s  

the  effect of corifiguration mixing. The in t e rp re t a t ion  cf 

3. . 

I the  

ing paper. 

data i n  terms of coxe polar iza t ion  is  given i n  the fol low- I 

(3  1 

THEORY 

The low-lying energy l eve l s  of chromium are shown i n  

Fig. 1. The ground state has a h a l f - f i l l e d  d s h e l l  and a s i n c l e  

s e lec t ron .  

atomic beam experiment by Goodman and Childs. 

Its hyperfine s t r u c t u r e  has been measured i n  an 

No quadru- (4 1 

7 pole  in t e rac t ion  is expected i n  the S stats. The s i x  valence 

e l ec t rons  form two low-lying odd configurations (3d) 4p and 

3 
5 

4 (3d) 4s4p connected t o  the  ground s t a t e  v i a  s-p and d-p transi- 

t i o n s  respect ively.  

3e formed from these configurations, both designated a s  7P 

The wavelengths €or both m i l t i p l e t s  a r e  i n  t he  convenient 

rar'ges 4250-4303 A and 3570-3610 A respect ively.  

Two i d e n t i c a l  Russell-Saunders s t a t e s  can 

2,3,4' 

0 

Measurements of the l i f e t imes  of both exci ted mul t ip le t s  

w e r e  made by observing the H a n l e  or zero-f ie ld  l e v e l  crossing 

e f f e c t .  The theory for t h i s  effect has been t r e a t e d  both 

c l a s s i c a l l y  arid qtanta! mechanically (6) and w i l l  no t  be re- (5 1 

viewed here. Our observations cons is t  of i n t e n s i t y  measurements 

of t h e  l i g h t  s ca t t e r ed  at 90° t o  the  inc ident  l i g h t  beam. The 

i 

( 5 )  i n t e n s i t y  is  given as a function of magnetic f i e l d  by 
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where I? i s  the rec iproca l  of t he  mean l i fe  of t he  excited 

state, y i s  the gyromagnetic ra t io ,  and C is an a r b i t r a r y  

constant  r e l a t i n g  t o  the  incident  l i g h t  i n t ens i ty ,  t h e  ex- 

perb -en ta l  geometry, and the number of scatterers. Tiis  line 

sl;i.ipe as a function of €I is an inverted Lorentzian with a f u l l  

width a t  h a l f - m a x i m u m  equal t o  r. The h a l f - m a x i m u m  OCCUL'S at 

subs t i t i t i n g  2 = i' . 2 2 
1/2 

for which 4y H 
1/2 

a f i e l d  value H 

r = 1/T, y = g (p / h ) ,  we obtain J O  

An unsuccessful attempt w a s  made t o  observe hyperfine 

s t r u c t u r e  l e v e l  crossings.  Consequently t h e  experiments on 

the gJ values and hyperfine s t r u c t u r e  tiere performed with the 

technique of high field double resonance. ( 7 )  The Hamiltonian 

appropriate  t o  t h e  case where the f i e l d  is s t rong enough t o  

decouple I and J has the  form 

.LC = gJpomJH + g p m H + am m I o 1  I J  

w h e r e  a and b are the nuclear magnetic dipole  and electric 

quadrupole hyperfine constants.  

t o  induce t r a n s i t i o n s  of the  type Am J = L-1, &a I = 0 is 

The rad io  frequency required 



.. 
r D 

- .  

b 

5 .  

For the even i s o t c p s  of c32rornium (I = C!)# which are 90% 

abundant i n  a na tura l  sarrple, the l a s t  t m  terms are absent. 

The remaining t e r m  enables one t o  measure c! precisely.  W i t h  

R magnetic i n t e rac t ion  present  the t r a n s i t i o n  frequency is 

‘J 

s h i f t e d  f r o m  the  c e n t r a l  maximum, and resonances appear a t  

5-a, 6 3  ... for  t he  case of a ha l f - in tegra l  spin.  Thus the 

;Tagnctic constant  can ‘be determined d i r ec t ly .  The qiadrupole 

1 3 
2 2 

rmrnent i s  s m a l l ,  (2) and i n  any case s p l i t s  each of the psaks 

s~rmmetrically about its center, i f  we  assume t h a t  a >> b. 

The change i n  polar iza t ion  of the  f luorescent  l i g h t  

dQe t o  t r a n s i t i o n s  i n  each of the  J l eve ls  has been calcu1ate:;l 

assuming complete s a t u r a t i s n  of the  radio-frequency resonance. 

The TT component of the  sca t t e red  rad ia t ion  w a s  expected to  be 

?educed by 30, 43, and 5% for  the leve ls  J = 4,3,2 respect ively.  

This w a s  cons is ten t  w i t h  observations. 

EXPERIMENTAL APPARATUS AND PROCEDURE 

With the  exception of two  modifications,  t he  apparatus 

is i d e n t i c a l  t o  t h a t  used for  t he  measurement of the f i n e  struc- 

tm-e i n  t he  3P state of lithium. (*) 

duced by an oven heated by e lec t ron  bombardment. 

molybdenum or tantalum i n  t he  f o r m  of cyl inders  closed a t  one 

The atomic beam is pro- 

Ovens of 

end w e r e  placed a t  the  center  of a 6-mil tungsten w i r e  win3i.y. 
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I A vol tage of t-1530 V applied t o  t h e  oven frox a cu r ren t  

I s t a b i l i z e d  power supply (Kepco ISZOB) and a cur ran t  G f  about 

2 A through the  fi lament w e r e  sufEicient  t o  raise the oven 

temperature so t h a t  a working v a p r  pressure of chromium w a s  

a t ta ined .  Natural chromium i n  the form of cy l inders  3.3 in .  

i n  diameter and 0.5 in .  long fitting smoothly into the oven 

w a s  used i n  t h e  l i f e t i m e  and g -value experiments. 

sam2les of metall ic chromiuln-53 enriched to  82% or higher 

Powder J 

w e r e  used to make the  hyperfine s t ruc tu re  measurements. No 

se r ious  attempt w a s  made t o  col l imate  the a ton ic  beam. A 

h r c n  n i t r i d e  plug JOE the purpose of preventing bombardment 

e l ec t rons  from escaping i n t o  the  radio-frequency Sie ld  region 

and a grounded nm1ybi;enum heat shield provided some collima- 

t i on .  

The source of resonance r ad ia t ion  w a s  a SchGler-type 

hollow cathode, Details of t he  lamp construct ion,  operation, 

and performance have been published. (9) It w a s  e s s e n t i a l  t o  

operats the lamp a t  a very low r e s idua l  gas pressure (about 

IO-’ Torr) i n  order t o  produce in tense  chromium l igh t .  The 

5 7  r e l a t i v e  i n t e n s i t i e s  0% the  spectral l i n e s  of t he  (3d 4p) P 

= 4.3:2.5:1.5 using 5 7  - (3d 4s) S t r i p l e t  w e r e  I ~ ~ ~ :  13-3: *2-3 

the 4226-A f i l ter  described i n  t h e  following paragraph. 

A Dumont No. 5664 photomultiplier w a s  used to detect 

the fluorescence from both t r i p l e t s .  For t he  Ha.rLle effect 

rneasurenents a narrow-band in te r fe rence  f i l ter  centered a t  



7. 
. .  
' 4225 ii fzvored the  J = 4 t r a n s i t i o n  at  4254 f i t  while a broad- 

band colcr f i l ter  w a s  :ised with the t r iplet  of the d sp con- b b  4 

f igurat ion.  In  the double resonance work t h e  first f i l ter  w a s  

replaced by a f i l t e r  pzaked a t  4258 whose f u l l  width a t  half-  

maxima- was ' 16 A. 

The radio-frequency coil i s  shown i n  Fig. 3. The cur- 

r e n t  runs down a se2tum i n  t h e  center  and back along the out- 

s ide.  W i r e  m s h  admits l i g h t  and atoms t o  t h e  t r a n s i t i o n  

region while it prevents rf leakage. The g experiments w e r e  

performed z t  high f i e l d  and high frequencies. 

J 

A high-power 

magnetron (Li t ton L3505) operating a t  about 4 kMc served as 

a rf soiirc?. Measurements of t he  hyperfine s t r u c t u r e  of the  

l e v e l s  of t he  d p configuration w e r e  made with the  use of a 5 

czvity-tunsd Airborne Instruments Co. power oscillator type 124A 

operating with a 2C39 UHF t r iode.  A f ixed frequency high-power 

magnetron (Raytheon QK390), operating a t  about 2460 Mc/sec, w a s  

used t o  study the hyperfine s t ruc tu re  of the  7P3 state of t he  

d s p  configuration. 4 Lock-in detect ion w a s  used t o  increase the  

signal-to-noise ratio,  and a l l  th ree  frequency sources were 

amplitude modulated a t  30 cps. 

RXPERIP!lERI!AL RESULTS 

(a) Lifetimes 

Henle pa t t e rns  observed i n  the  resonance rad ia t ion  from 
7 5 4 

t h e  P t e r m s  of both the  3d 4p and 3d 4s4p configurat ions are 
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' shown i n  Fig. 3. These recorder traces are dispersion-type 

curves which a re  the  der ivat ives  of the  Lorentzian l i nes .  
& '  

They are obtained when the s t a t i c  magnetic f i e l d  is modulated 

by an a l t e rna t ing  f ie ld  of s m a l l  amplitude and l o w  frequency 

for  t h e  purpose of lock-in detection. The ideal modulation 

amplitude for  appreciable s igna l  with s m a l l  modulation broad- 

ening is  about  one-third the half-width of t h e  resonance. 

The l i fe t ime may be deduced from t h e  l inewidth with 

t h e  a id  of Eq.(2) which can be wri t ten  

is  t h e  full-width a t  half-maximum of t he  ac tua l  
1 / 2  

where AH 

Lorentzian l i n e  shape. The determination of Lw 1/2 is  com- 

plicated by the  fact t h a t  each curve is a superposi t ion of 

l e v e l  crossings i n  a l l  three 3 l eve ls .  S ince  the  l i fe t i ines  

of the J l eve ls  of t h e  same mult iplet  are near ly  equal,  Eq. (5) 

i m p l i e s  t h a t  the l a r g e s t  AH w i l l  occur for  the  t r a n s i t i o n  
1/2 

whose upper l e v e l  has the  s m a l l e s t  g fac tor .  [ In  t h i s  case J 
I 

gJ( P4) = 1.75.1 The radiat ion rates as calculated from the 

= 99:147:8. Brei t for  mu la ( 5 )  are i n  the  r a t i o  R 4-3: '3-3: '2-3 

The lamp output i n t e n s i t y  measurements described above also 

favor the J = 4 and J = 3 levels. 

- 7S i ng  to the  P4 

The 4254-x l i n e  correspond- 

t r ans i t i on  w a s  favored by the  in te r fe rence  7 
3 
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5 fi l ter  used i n  the  3d 4p measurement. These considerat ions 

suggest t h a t  t he  width of the  observed pa t t e rn  may be a t t r i -  
b 

7 7 buted t o  the P4 -., S t r ans i t i on .  The presence of even a 3 
7 

-., S t r a n s i t i o n  introduces 7 
p3 3 s ign i f i can t  s igna l  from t h e  

an error which is s m a l l  compared t o  t h e  experimental precis ion.  
7 7 
I I 

+ S t r a n s i t i o n  would introduce consider- Light from t h e  P2 3 

able error because of the  large d i f f e rence  between g (J=4) J 

and gJ(J=2), b u t  t he  r e s u l t s  for the r ad ia t ion  rates preclude 

such an effect. 

The best data y i e ld  1.13 G and 5.80 G fo r  t he  peak-to- 

trough separat ions of the  Hanle d ispers ion  pattersa of t he  

5 7  4 7 (3d 4p) P4 and (3d 4s4p) P4 l eve l s  respect ively.  A f ac to r  of 

J3 must be included t o  convert these separat ions t o  the  f u l l  

half-widths a t  half-maximum of the in tegra ted  Lorentzian l ine .  

We have 

L\H (3d54p) = 1.13xJ3 1.95 G 
1/2 

4 
AH (3d 4s4p) = 5.8C)x./3 = 10.0 G . 
1/2 

The f i e ld  measurements w e r e  made with a H a l l  probe ( B e l l  gauss- 

m e t e r )  s i nce  the absolute  f i e l d s  w e r e  too low t o  obta in  usable  

proton resonance s igna l s ,  The gaussmeter is s u f f i c i e n t l y  ac- 

Curate for t h e  l i f e t i m e  determination (better thm 1%). The 

magnetic f i e ld  sweep was  s tudied as a function of magnet cur- 

rent s ince  t h e  magnet power supply w a s  no t  w e l l  regulated near 
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' zero f i e l d .  Only a very s l i g h t  departure from l i n e a r i t y  was 
b 

found i n  the  wings of t he  Hanle pat tern.  The r e s u l t i n g  life- 

t i m e s  from Eq. ( 5 )  are 

10. 

~ [ ( 3 d ~ 4 p ) ~ P ~ ]  = (3.34&0.5)~10-* sec 

(7 1 
T [  (3d44s4p) 7 P4] = (6 .5 l ; tO.9)~10-~  sec. 

The l i m i t s  of error a l l o w  for  the presence of f i e l d  inhomo- 

genei ty  broadening and coherence narrowing. These e f f e c t s  

w e r e  not  thoroughly invest igated.  

(b) g Values J 

For a sp in  zero isotope Eq.(4) is simply 

The curves shown i n  Fig. 4 w e r e  taken a t  1600 G and approxi- 

mately 4 kMc. 

kc/sec for  protons i n  a mineral oil sample. 

frequency is t h e  20th harmonic of t he  frequency listed at 

the top of each curve. 

frequencies w e r e  measured w i t h  Hewlett-Packad model 5243L 

frequency counters. The small error introduced by the  t i m e  

constant  of t h e  sweep w a s  eliminated by averaging da ta  taken 

Markers indicate  the  resonance frequency i n  

The t r a n s i t i o n  

Both proton resonance and t r a n s i t i o n  

i n  both s w e p  direct: -I ons . 
The f i n a l  r e s u l t  for gJ i n  each J l e v e l  is tabulated 

i n  T a b l e  I together with the  pure L-S coupling value and a 
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(10) determination made from earlier optical spectroscopic work. 

The radio-frequency and op t i ca l  values are i n  good agreement. 
b c 

4 7 and (3d 4s4p) P3 5 7  
2,384 

(c) Hfs Constants i n  (3d 4p) P 

The presence of t he  hyperfine in t e rac t ion  i n  the odd-A 

53 isotope Cr (I=3/2) produces a s p l i t t i n g  of the g p H peak J o  

i n t o  four equal ly  spaced peaks whose separat ion is j u s t  the 

a value,  provided the magnetic f i e l d  completely uncouples I and 

J. The r e s u l t s  of an e a r l y  r u n  i n  the  J = 3 and J = 4 states 

with a sample enriched t o  82% odd-isotope are shown i n  Fig. 5 .  

The pa t t e rns  w e r e  obtained a t  840 Mc/sec. The J = 4 pa t t e rn  is 

indeed a superposit ion of four peaks augmented by the I = 0 

resonance as is borne out  by Fig. 6. This r e s u l t  was obtained 

using a 99% enriched sample. The J = 3 s t a t e ,  however, shows 

no hyperf ine s t r u c t u r e ,  a r e s u l t  t h a t  remained unchanged i n  

subsequent experiments. 

I f  one assumes t h a t  the outer  p e lec t ron  alone is in-  

volved i n  the  hyperfine in te rac t ion ,  the magnetic constants  

are predicted t o  be i n  t h e  ra t io  Ia(4)I  : l a (3 )  1 :1a(2) /  = 

81:140:101. The J = 3 l e v e l  is expected t o  have t h e  largest 

5 7  hyperf ine s p l i t t i n g  of the three  leve ls  of (3d 4p) P, bu t  

V i r tua l ly  no s p l i t t i n g  is observed. It is  as though the 

hyperf ine in te rac t ion  had been quenched i n  t h a t  l eve l .  
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Figure 7 shows a sample of data taken i n  the J = 2 

‘ state a t  7 7 0 . 8  Mc/sec. The four peaks are q u i t e  w e 1 1  re- 

solved, i n  con t r a s t  t o  t h e  J = 4 resonance i n  Fig. 6. The 

J = 2 peaks, however, are ac tua l ly  not  q u i t e  uniformly spaced 

because of incomplete decoupling of I and J. The first-order 

per turba t ion  r e s u l t  of Eq.(3) is inadequate for the prec is ion  

of t h e  measurement. Second-order theory is  necessary for 
- b w  

t h i s  case. From t h e  off-diagonal matrix elements of a1.J 

i n  t h e  mI%, representat ion w e  der ive t h e  following t r a n s i t i o n  

frequencies for bmI = 0 resonances: 
-% 
L 3 3 a 

2 gJpoH3/2 
+ a + -  hv(mI= 3/2) = g p H J 0 3/2 I 

n 

= H  = H  i n  t h e  
1/2 - 1/2 -3/2 For s impl i c i ty  one may set H = H 

3/2 

last t e r m  of these  equations,  thereby neglect ing a higher order 

t e r m .  Then the second and t h i r d  equations give 

a I$ = 

w h i l e  t h e  f i r s t  and 

a 1;;1 = 

gJc’o 
h (H- 1/2- H1/2 
- 

I 

fourth equations y i e l d  

gcI  1 J O  
3 h  (H-3/2’ H3/2) 
-- 
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1 is 34.18 kc  i n  u n i t s  of -1/2- 5 / 2 8  
The average value €or (H 

t he  proton frequency while (H_V2- H3,2)av i s  101.91 kc. 

Equation (10) then g ives  }a1 = 26.24 M c  while f r o m  Eq. (11) 

we f ind  I a1 = 26.08 klc. Taking the  mean of these  two deter-  

minations, our f i n a l  r e s u l t  for the  magnetic i n t e rac t ion  con- 

s t a n t  is  la(J=2) I = 26.16kO. 10 M c .  This r e s u l t  was used t o  

check the adequacy of t h e  second-order approximation by cal- 

cu la t ing  the  expected f i e l d  values for  t h e  peaks. All meas- 

ured and predicted pos i t ions  w e r e  found t o  be i n  almost per- 

fect agreement. 

The f i r s t -o rde r  per turbat ion theory is s u f f i c i e n t  for 

determining the  s p l i t t i n g  i n  the  h f s  pa t t e rn  of the  J = 4 state 

s ince  the hyperfine in t e rac t ion  i s  considerably smaller and the  

decoupling of I and J more complete than i n  the  J = 2 s t a t e .  

The magnetic i n t e rac t ion  constant i s  obtained by f i t t i n g  the  

da t a  curves t o  four equal ly  spaced Lorentzian-shaped l i n e s  

(Fig. 6 i l l u s t r a t e s  t h i s  procedure). W e  var ied  the amplitude, 

w i d t h ,  and spacing of the  four l i n e s  (keeping the amplitude 

and width of a l l  peaks t h e  same r e l a t i v e  t o  one another) u n t i l  

t h e i r  envelope coincided with t h e  observed resonances. / a ( ~ = 4 ) 1  

is given d i r e c t l y  t o  f i r s t  order by the  separat ion of adjacent 

l i n e s .  The f i n a l  value obtained by t h i s  process is  I a(J=4) I = 

11.6k0.15 M c .  
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8 It is c l e a r l y  impossi’lle t c i  give  anything better than 

an upper l i m i t  t o  la(J=3) I .  A ca re fu l  study of t h e  broadening 

of a set of data curves similar to Fig. 5 leads t o  the  conclu- 

s ion  t h a t  la(J=3)1 < 1 . k 2 . 0  Mc.  

4 7 Double resonance work i n  t he  (3d 4s4p) P t e r m  w a s  

hampered by t h e  severe radio-frequency power requirements 

imposed by t h e  s h o r t  l i f e t i m e .  Only the J = 3 state Zeeman 

t r a n s i t i o n s  w e r e  

for tuna te ly ,  t h e  

and t h e  9, value 

r e s u l t ,  all four 

of s u f f i c i e n t  i n t e n s i t y  t o  be of use. Un- 

linewidths of these t r a n s i t i o n s  are large 

too close t o  t h a t  of a free electron.  As a 

hyperfine peaks could not  be observed before 

an enormous e l ec t ron  s i g n a l  swamped t h e  desired s igna l .  

d i f f i c u l t y  w a s  reduced by working a t  higher f ields where the 

s m a l l  d i f fe rence  i n  g factors permits greater reso lu t ion ,  by 

improving the vacuum so less r e s idua l  gas w a s  ava i lab le  for 

i on iza t ion  and e x c i t a t i o n  by the e l ec t rons ,  and by ca re fu l ly  

tuning t h e  power i n t o  t h e  t r a n s i t i o n  region. W i t h  these i m -  

provements two w e l l  resolved peaks and the beginning of a t h i r d  

could be reproduced and studied. Second-order terms of the 

type appearing i n  Eq. (9)  w e r e  included, and the a value w a s  

calculated by successive approximations. 

l a (  p3)1 = 70.452.6 MC. 

This 

The f i n a l  value is 

7 

Only absolute magnitudes fo r  the hyperfine constants  

have been determined. T h e  s ign  of a ( J )  cannot be ascer ta ined 
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w i t h  the  arrangement of po lar izers  employed for  t h e  measure- 

ments. It would be necessary t o  e x c i t e  with cr+ or 0- radia-  

t i o n  t o  obtain information about the s igns.  Unfortunately , (11) 

the  physical  c h a r a c t e r i s t i c s  of t he  i ron  magnet preclude the  

performance of an experiment w i t h  pure a+ or pure 0- components. 

DISCUSSION 

The values for  t he  l i fe t imes  a re  summarized i n  Table I1 

( 12 together with t h e  r e s u l t s  of o p t i c a l  spectroscopy measurements. 

Values for the o s c i l l a t o r  s t rengths  given by Cor l i s s  and Bozmann 

are converted t o  l i fe t imes  by the r e l a t i o n  

g2 2 

g1 
f T  = 1.499 - A 8 

w h e r e  g and g1 a r e  the  s t a t i s t i c a l  w e i g h t s  of the upper and 2 

lower l eve l s  respec t ive ly ,  and f is  the o s c i l l a t o r  s t rength 

for the l i n e  i n  absorption.(13) A t h e o r e t i c a l  value for 

5 7  
T [  (3d 4p) P4], calculated by t h e  method of Bates and Damgaard, 

is  included i n  the  t ab le  for comparison w i t h  the  experimental 

results.  The Hanle e f f e c t  l i fe t imes a r e  i n  agreement w i t h  t he  

values  obtained by o p t i c a l  spectroscopy, although t h e  precis ion 

of the latter measurements is poor. On the other hand, there 

is  only order of magnitude agreement with the calculated value,  

probably due t o  a f a i l u r e  of the Coulomb apprGximation as  one 

goes t o  more complex spectra .  
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The g values have been computed from the t r a n s i t i o n  J 
b 

frequencies of the spin zero isotopes assuming the  v a l i d i t y  of 

Eq. ( 8 ) .  However , the Zeeman operator possesses matrix ele- 

ments off-diagonal i n  J which lead t o  a quadrat ic  f i e ld  t e r m  

i n  the expression for the energy of a pa r t i cu la r  Zeeman level .  

This e f f e c t  w a s  not  s tudied experimentally, b u t  an estimate 

of the  ra t io  of the quadrat ic  t o  the  l i nea r  t e r m  was  made on 

the basis of the known f i n e  s t ruc tu re  separat ions.  A r a t i o  

of  t h e  order of p a r t s  i n  lo5 was found which i s  within the 

quoted precis ion of t he  measurements. 

The e f f e c t s  which influence the  g values are devia- J 

t i o n s  from L-S coupling, r ad ia t ive  correct ions t o  g con- 

f igu ra t ion  in te rac t ion ,  r e l a t i v i s t i c  and diamagnetic e f f e c t s ,  

and motion of the nucleus. The first t w o  of these have been 

estimated, (I4) and details w i l l  be given b e l o w .  Configuration 

4 7 i n t e r a c t i o n  with (3d 4s4p) P is c e r t a i n l y  present  as discussed 

(3)  In addi t ion,  the g values  of that  i n  the  following paper. 

t e r m  ind ica te  a breakdown of L-S coupling within t h e  admixed 

s' 

J 

configurat ion.  Thus the combination of configurat ion and spin- 

orbit  i n t e rac t ions  e f fec t ive ly  admixes a g r e a t  many states i n t o  

(3d 4p) P and can d r a s t i c a l l y  a f f e c t  i ts  gJ values. 

ate  evaluat ion of relativist ic and dimagiletic contr ibut ions 

requi res  a knowledge of the Schroedinger wave funct ions and 

cannot be given. 

of a f e w  p a r t s  per  m i l l i o n  t o  g 

5 7  
An accur- 

Motion of t h e  nucleus r e s u l t s  i n  a correct ion 

and w i l l  be neglected. L 
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7 5 
I n  addi t ion t o  t h e  P ground t e r m ,  t he  3d 4p configura- 

The J = 2 1,2,3'  t i o n  possesses a higher lying t r i p l e t ,  'P 

and J = 3 s t a t e s  of t h i s  t e r m  are admixed by t h e  spin-orbi t  

operator i n t o  the  corresponding J s t a t e s  of t h e  ground term. 

Perturbat ion theory is used to evaluate t h e  admixture i n  the  

following paper. 

use of nzasurcd oscillator rtrengths of intercombination l i n e s  

A purely empirical estimate can be made w i t h  t h l  

whose presence is clear evidence of the  breakdown of L-S 

coupling. I n  p a r t i c u l a r ,  t h e  P3 state combines with the  

'S2 state of 3d 4s. 

t u r e  can be wri t t en  

7 

5 The wave functions describing t h e  admix- 

The weighted o s c i l l a t o r  s t rengths  gf as given i n  reference (11) 

can be shown t o  be proportional t o  - l ( a ~ ~ l b ) } 2  where the matrix 
1 
1 

element is t h a t  of the electric dipole  operator between the 

ground and exci ted states. Then 

5 -5 

where 1 and h are the  wavelengths for t he  q u i n t e t  and 
3 45 7 -5 

septet t r a n s i t i o n s  respect ively,  and the  coe f f i c i en t s  a and B 
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are those appearing i n  Eq.(13). The ra t io  of these equations 

y ie lds  
L 

7 5  

2 5 5  
@2 17-5 gf( p34 s21 -3 

U x5-5 gf( P3-. s21 
= 2.81~10 - -  - 

2 2  -3 Similar ly  for J = 2, B /a = 2.20~10 . The coe f f i c i en t  B 

is then 0.053 and 0.047 for the  J = 3 and J = 2 states re- 

spect ively,  i n  fair agreement with the  values predicted by 

perturbat ion theory as given i n  t h e  following paper. 

Radiative corrections to g can be made by expressing J 

g as a sum of gL and gs terms and subs t i t u t ing  J 

2 
= 2 (1.0011596) 2[1 + - - 0.328 71 U U 

n 2n 

ins tead  of gs = 2. 

Column one lists the  J l eve ls  s tudied.  Column t w o  contains  

These correct ions are listed i n  Table 111. 

t he  

UINl 

t h e  

t h e o r e t i c a l  

t h r e e  shows 

theor e t  ica 1 

g value with the  r ad ia t ive  correct ion.  C o l -  

t he  spin-orbit  correct ion,  and column four lists 
J 

. This is compared with the experimental 95 

Value given i n  column f ive.  The difference is a t t r i b u t e d  t o  

r e l a t i v i s t i c  and diamagnetic effects and t o  configurat ion in t e r -  

act ion.  

No de ta i l ed  discussion w i l l  be given here of the meas- 

ured hyperfine constants  as t h i s  is the subjec t  of the f 9 ; l l o w h g  

paper. 

s m a l l  or zero i n  all cases, even for the  configurat ion possessing 

I t  may only be noted t h a t  the hyperfine s t r u c t u r e s  are 
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an unpaired s electron. The resu l t s  are summarized i n  Table IV.  
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TABLE CAPTIONS . 
5 7  

2 , 3 , 4 *  Table I .  Chromium gJ factors in  (3d 4p) P 

T a b l e  11. Chromium l i f e t i m e  resul ts .  

Table 111. A t o m i c  g values: theory and experiment. 

Table  IV. Experimental hyperfine constants. 
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Pure L-S rf Spectroscopy Optical Spec- 
Coupling Value t r  oscopy Value Level 

23 .  

Table I 

J = 4  1.7500 1.7512*0.0003 

J = 3  1.9167 1 .9  178*0.0002 

J = 2  2 .3333 2.3351*0.0003 

1.752 

1 .92  

2.334 
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T a b l e  I11 

Lande Value 

Radiative Correction 
Correction 

with Spin-Orbit Theoretical Experimental 

95 95 
Level 

7 
p4 

1.7 5 17 14 0 1.7517 1.7512 

- 0.00070 1.9181 1.9178 1.91879 
7 
p3 

7 
p2 2.336413 - 0.00110 2.3353 2.3351 
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Table IV 

Configuration Leve 1 \a(J)I in ~c 

11.6*0.15 7 
4 
P 5 3d 4p 

7 
p3 

1.5&2.0* 

7 26.16&0.10 
p2 

4 3d 4s4p 7 
p3 

70.Q2.6 
~~ 

*This value is an upper l i m i t .  
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FIGURE CAPTIONS 

F i g .  1. Low-lying energy levels of Cr I. 

5 7  F i g .  2 .  a)  Hanle er'fect i n  the (3d 4p) P t e r m .  b) H a n l e  

4 7 effect i n  the (3d 4s4p) P t e r m .  

F i g .  3 .  Radio-frequency coi l  €or double resonance. 

F i g .  4, High-field double resonance i n  even isotopes of 

chromium. 

5 7  53 Fig. 5 .  High-field double resonance i n  (3d 4p) Pj of Cr . 
5 7  53  

Fig. 6 .  High-field double resonance i n  (3d 4p) P4 of Cr . 
5 7  53  Fig. 7 .  High-field double resonance i n  (3d 4p) P2 of Cr . 
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